Вторник, 24.06.2025, 05:47

КИТ Инф. технологии

Категории раздела
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог файлов

Главная » Файлы » Мои файлы

Стратегическое планирование сетей масштаба предприятия
31.05.2017, 16:41

2.1.2. Технология 100VG-AnyLAN - улучшенное качество обслуживания за ту же стоимость

В качестве альтернативы технологии FastEthernet фирмы AT&T и HP выдвинули проект новой недорогой технологии со скоростью передачи данных 100 Мб/с - 100Base-VG (VoiceGrade - технология, способная работать на кабеле категории 3, предназначенном первоначально для передачи голоса). В этом проекте было предложено усовершенствовать метод доступа с учетом потребности мультимедийных приложений, а для формата пакета сохранить совместимость с форматом пакета сетей 802.3. В сентябре 1993 года по инициативе фирм IBM и HP был образован комитет IEEE 802.12, который занялся стандартизацией новой технологии. Проект был расширен за счет поддержки в одной сети кадров не только формата Ethernet, но и формата TokenRing. В результате новая технология получила название 100VG-AnyLAN, то есть технология для любых сетей, где под любыми сетями понимаются сети Ethernet и TokenRing.

Летом 1995 года технология 100VG-AnyLAN получила статус стандарта IEEE 802.12.

В технологии 100VG-AnyLAN определен новый метод доступа DemandPriority с двумя уровнями приоритетов - для обычных приложений и для мультимедийных, а также новая схема квартетного кодирования QuartetCoding, использующая избыточный код 5В/6В, и позволяющая передавать по каждой из 4-х пар категории 3 данные с полезной скоростью 25 Мб/c.

Пропускная способность и качество обслуживания

Метод доступа DemandPriority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Концентратор отличается от обычных повторителей за счет того, что он изучает адреса присоединенных к нему узлов (в момент физического подключения) и поэтому не передает принятый от узла кадр на все порты, а только на тот, на который нужно. Среда по-прежнему разделяемая, так как концентратор за один цикл опроса портов принимает в свой буфер только один кадр - от приоритетного порта или же при равных приоритетах от первого по порядку. Однако, некоторые этапы работы с разными узлами совмещаются во времени, и за счет этого ускоряется передача кадров.

40

Работа сети 100VG-AnyLAN не дает гарантий приложениям по поддержанию для них определенного качества обслуживания, как это делает технология АТМ. Приоритеты только уменьшают задержки трафика реального времени, но это сервис по принципу besteffort, то есть обслуживание "по возможности" лучшее, но без каких-либо количественных гарантий.

Метод DemandPriority повышает коэффициент использования пропускной способности сети - до 95% по утверждению компании Hewlett-Packard.

Используемые кабельные системы и максимальный диаметр сети

Отсутствие требования распознавания коллизий позволяет без проблем строить протяженные сегменты сети без коммутаторов, только на концентраторах - до 2-х километров между узлами на оптоволокне и до 100 метров на витой паре.

Общий диаметр сети, построенной на концентраторах, может составлять при использовании многомодового оптоволокна до 5000 м.

Связь, соединяющая концентратор и узел, может быть образована:

4 парами неэкранированной витой пары категорий 3,4 или 5 (4-UTPCat 3,4,5);

2 парами неэкранированной витой пары категории 5 (2-UTPCat 5);

2 парами экранированной витой пары типа 1 (2-STPType 1);

2 парами многомодового оптоволоконного кабеля.

Хотя могут использоваться любые варианты кабельной системы, наиболее распространен вариант 4-UTP, который был разработан первым, кроме того, его популярность объясняется тем, что он работает на витой паре категории 3, установленной во многих существующих локальных сетях.

Совместимость с существующими локальными сетями

Сегменты 100VG-AnyLAN достаточно просто могут быть внедрены в существующие сети. Каждый концентратор может быть сконфигурирован на поддержку либо кадров 802.3 Ethernet либо кадров 802.5 TokenRing. Все концентраторы, расположенные в одном и том же логическом сегменте (не разделенном мостами, коммутаторами или маршрутизаторами), должны быть сконфигурированы на поддержку кадров одного типа. Для связи сегмента 100G-AnyLAN сегментами Ethernet или TokenRing нужно использовать коммутатор или маршрутизатор, так как частота передачи бит и способ их кодирования отличаются, и концентратор не может справиться с такими проблемами. Коммутатор может достаточно быстро передавать кадры из сегмента 100VG-AnyLAN в сегмент традиционной технологии и обратно, так как трансляция формата кадра и пересчет контрольной суммы не требуется.

Перспективы и области применения 100VG-AnyLAN

Технология 100VG-AnyLAN имеет меньшую популярность среди производителей коммуникационного оборудования, чем конкурирующее предложение - технология FastEthernet. Компании, которые не поддерживают технологию 100VG-AnyLAN, объясняют это тем, что для большинства сегодняшних приложений и сетей достаточно возможностей технологии FastEthernet, которая не так заметно отличается от привычной большинству пользователей технологии Ethernet. В более далекой перспективе эти 41

производители предлагают использовать для мультимедийных приложений технологию АТМ, или же GigabitEthernet, а не 100VG-AnyLAN.

Тем не менее, число сторонников технологии 100VG-AnyLAN растет и насчитывает около 30 компаний. Среди них находятся не только копании Hewlett-Packard и IBM, но и такие лидеры как CiscoSystems, Cabletron, D-Link и другие. Все эти компании поддерживают обе конкурирующие технологии в своих продуктах, выпуская модули с портами как FastEthernet, так и 100VG-AnyLAN.

Наиболее очевидным случаем применения технологии 100VG-AnyLAN является модернизируемые сети TokenRing. Технология TokenRing широко используется на протяжении многих компанией IBM и некоторыми другими (Madge, Thomas-Conrad) для построения сегментов локальных сетей, решающих ответственные бизнес-задачи. Эта технология популярна в западных банках, использующих мейнфреймы и миникомпьютеры производства IBM, и многих других отраслях бизнеса. Кроме мощной поддержки компанией IBM, популярность TokenRing объясняется наличием у нее встроенных в протокол (и, соответственно, в оборудование и сетевые адаптеры) процедур самотестирования сети, не таких развитых как у FDDI, но тем не менее позволяющих обнаружить источник неисправности кольца.

Однако, перспектив дальнейшего развития у технологии TokenRing практически нет - это признают многие ведущие специалисты (смотрите заметки Ника Липписа "TheTokenRingTrap" в февральском номере DataCommunications и Робина Лейланда "TimetoMoveOnThePriceofEthernetSwitching" в июльском номере того же журнала). Предел скорости в 16 Мб/c не дает возможности масштабирования производительности сетей TokenRing в широких масштабах, а сеть, построенная на коммутаторах TokenRing может оказаться дороже сети, построенной на концентраторах и коммутаторах FastEthernet. В примере, рассмотренном в статье Робина Лейланда, сравнивается стоимость коммутируемой сети TokenRing и коммутируемой сети Ethernet/FastEthernet/GigabitEthernet для сети 7-этажного здания. Этот пример более подробно рассмотрен в разделе 2.2.4, а здесь приведем только окончательные результаты - общая стоимость полностью коммутируемой сети TokenRing составила $415 625, в то время как иерархически построенная сеть Ethernet/FastEthernet/GigabitEthernet "потянула" всего лишь на $270 000.

Но на полную одномоментную замену оборудования TokenRing решится мало предприятий, поэтому в условиях необходимости сосуществования со старыми сетями TokenRing технология 100VG-AnyLAN может найти свое место.

Гигабитные сети 1000VG

Комитет 802.12, ведомый специалистами компании Hewlett-Packard, также ведет работы по разработке варианта этой технологии для скорости передачи данных в 1 Гигабит в секунду. Вариант этой технологии также ориентируется на физический уровень стандарта FibreChannel, а в качестве метода доступа предполагается использовать метод DemandPriority.

К энтузиастам перевода технологии VG на гигабитные скорости относятся также компании CompaqComputer, TexasInstrument и Motorola.

2.2. Коммутаторы вместо хабов и маршрутизаторов, индивидуальные связи вместо разделяемых 42

Транспортная система локальных сетей масштаба здания или кампуса уже достаточно давно стала включать разнообразные типы активного коммуникационного оборудования - повторители, концентраторы, коммутаторы и маршрутизаторы, соединенные в сложные иерархические структуры. 

Активное оборудование управляет циркулирующими в сети битами, кадрами и пакетами, стараясь организовать их передачу так, чтобы данные терялись как можно реже, а попадали к адресатам как можно быстрее, в соответствии с потребностями трафика работающих в сети приложений.

Описанный подход стал нормой при проектировании крупных сетей и полностью вытеснил сети, построенные исключительно на основе пассивных сегментов кабеля, которыми совместно пользуются для передачи информации компьютеры сети. Преимущества сетей с иерархически соединенным активным оборудованием не раз проверены на практике и сейчас никем не оспариваются.

И, если не обращать внимание на типы используемого оборудования, а рассматривать их просто как многопортовые черные ящики, то может сложиться впечатление, что никаких других изменений в теории и практике построения локальных сетей нет - предлагаются и реализуются очень похожие схемы, отличающиеся только количеством узлов и уровней иерархии коммуникационного оборудования.

Однако, качественный анализ используемого оборудования говорит об обратном. Изменения есть, и они существенны. За последние год-два коммутаторы стали заметно теснить другие виды активного оборудования с казалось бы прочно завоеванных позиций. Несколько лет назад в типичной сети здания нижний уровень иерархии всегда занимали повторители и концентраторы, верхний строился с использованием маршрутизаторов, а коммутаторам отводилось место где-то посередине, на уровне сети этажа. К тому же, коммутаторов обычно было немного - их ставили только в очень загруженные сегменты сети или же для подключения сверхпроизводительных серверов.

Сегодня коммутаторы стали вытеснять маршрутизаторы из центра сети на периферию , где они использовались для соединения локальной сети с глобальными.

 

Центральное место в сети здания занял модульный корпоративный коммутатор, который объединял на своей внутренней, как правило, очень производительной, магистрали все сети этажей и отделов. Коммутаторы потеснили маршрутизаторы потому, что их показатель "цена/производительность", рассчитанный для одного порта, оказался гораздо ниже при приближающихся к маршрутизаторам функциональным возможностям по активному воздействию на передаваемый трафик. Сегодняшние корпоративные коммутаторы умеют многое из того, что несколько лет назад казалось исключительной прерогативой маршрутизаторов: транслировать кадры разных технологий локальных сетей, например Ethernet в FDDI, осуществлять фильтрацию трафика по различным условиям, в том числе и задаваемым пользователем, изолировать трафик одного сегмента от другого и т.п. Коммутаторы ввели также и новую технологию, которая до их появления не применялась - технологию виртуальных сегментов, позволяющих переносить пользователей из одного сегмента в другой чисто программным путем, без физической перекоммутации разъемов. И при всем при этом стоимость за один порт при равной производительности у коммутаторов оказывается в несколько раз ниже, чем у маршрутизаторов.

После завоевания магистрального уровня корпоративной сети коммутаторы начали наступление на сети рабочих групп, где до этого в течение последних пяти лет всегда использовались многопортовые повторители (концентраторы) для витой пары, заменившие пассивные коаксиальные сегменты. Появились коммутаторы, специально предназначенные для этой цели - простые, часто неуправляемые устройства, способные только быстро передавать кадры с порта на порт по адресу назначения, но не поддерживающие всей многофункциональности корпоративных коммутаторов. Стоимость таких коммутаторов в расчете на один порт быстро снижается и, хотя порт концентратора по прежнему стоит меньше порта коммутатора рабочей группы, тенденция к сближению их цен налицо.

44

Подтверждением этой тенденции могут служить данные исследовательских компаний InStat и Dell'OroGroup за 1996 и их прогноз на 1998 год:

1996

1998

Процент снижения за два года

Средняя цена за порт концентратора

Ethernet

$101

$94

6.9%

FastEthernet

$200

$145

27.5%

Средняя цена за порт коммутатора

Ethernet

$427

$200

53%

FastEthernet

$785

$500

36.3%

Отношение порт коммутатора/порт концентратора

Ethernet

4.22

2.1

FastEthernet

3.9

3.4

Эти данные собраны по всем классам коммутаторов, от уровня рабочей группы до магистрального уровня, где концентраторы не применяются, поэтому сопоставление концентраторов только с коммутаторами рабочих групп дало бы еще более близкие в стоимостном отношении результаты, так как стоимость за порт Ethernet у отдельных коммутаторов доходит до $150, то есть всего в полтора раза превышает стоимость порта концентратора Ethernet.

Особенно ярко тенденция завоевания локальных сетей коммутаторами проявилась в 1996, который назван редакцией журнала DataCommunications годом коммутаторов. Такой вывод был сделан на основании достаточно детального обзора состояния рынка в 1996 году и прогноза на 1997 год, подготовленного редакцией журнала DataCommunications при участии ведущих компаний, специализирующихся на анализе рынка: Dataquest, IDC, GartnerGroup, Dell'OroGroup, YankeeGroup и других.

Наиболее высокие темпы роста зафиксированы в секторе рынка коммутаторов локальных сетей - 216%. И уже с большим отрывом от коммутаторов расположились другие лидеры рынка:

адаптеры высокоскоростных технологий LAN - 160%;

средства удаленного доступа - 151%;

корпоративные АТМ-коммутаторы - 103%;

услуги сетей ISDN - 102%.

Несмотря на такое активное внедрение в локальные сети, у коммутаторов наряду с достоинствами имеются и недостатки - не отдельные ошибки реализации какой-либо модели, а принципиальные слабости, ограничивающие их сферу применения и дающие шансы выжить как концентраторам, так и маршрутизаторам.

Еще одним подтверждением особой роли коммутаторов в современных локальных сетях является общее мнение нескольких ведущих производителей сетевого оборудования, собранных в конце октября 1996 года под эгидой журнала "DataCommunications" и компании DataPro. Пять ведущих поставщиков сетевого оборудования обсуждали вопрос: "Какие конкретные решения можно предложить сетевым специалистам крупных предприятий, для того, чтобы они смогли с наименьшими затратами приготовить свои 45

сети к внедрению технологии Intranet, а также ко все возрастающему объему бизнес-задач?"

В области WAN свои варианты ответа на этот вопрос предложили:

AscomTimeplex;

Motorola/Cascade;

Micom;

Newbridge.

Свое видение вопроса в области построения сетей масштаба здания или нескольких недалеко отстоящих зданий (сетей кампуса) представили:

Newbridge;

Cabletron.

Решения предлагались не на пустом месте, а в виде предложений по модернизации уже существующих сетей. Каждое предложение содержит постановку задачи, предложенную всем участникам мероприятия, и достаточно подробное описание и обоснование каждого из представленных решений. Несмотря на разнообразие подходов, можно сформулировать некоторые положения, с которыми согласны все участники обсуждения. В области локальных сетей они звучат так:

в локальных сетях доминирует технология коммутации;

особую роль будет играть технология виртуальных сетей VLAN.

2.2.1. Коммутация - выигрыш в скорости. Всегда? Почти всегда!

Производительность сети, построенной на коммутаторе, обычно в несколько раз превышает производительность аналогичной сети, построенной с использованием концентратора.

Этот эффект является следствием нескольких факторов:

Передачей кадров только на тот сегмент (микросегменты, если к ним подключен один конечный узел), на котором этот кадр действительно нужен. Точно также работали локальные мосты, но они не обладали следующим свойством.

Параллельная передача кадров между входными и выходными портами, неблокирующий характер всех обрабатывающих узлов коммутатора - процессора порта, коммутирующей матрицы, внутренней межмодульной шины и т.п. Параллельная передача кадров совмещает во времени все этапы по передаче кадра от входного порта - помещение его во внутренний буфер, просмотр адресной таблицы, перенос кадра в выходной буфер выходного порта - и поэтому позволяет потенциально ускорить пропускную способность участка сети в N/2 раз по сравнению с применением концентратора, где N - число портов, работающих в классическом полудуплексном режиме. Если порты работают в полнодуплексном режиме, то ускорение может составить N раз (рис.2.5). Неблокирующий характер означает, что все узлы коммутатора могут обработать поток кадров, поступающий на входные порты с максимальной для протокола скоростью.

Конвейерный способ передачи кадра между входным и выходным портами, когда кадр начинает передаваться на выходной порт сразу же после прихода нескольких 46

первых байт с адресом назначения. Этот фактор не так значим, как параллельная обработка кадров, поступающих на несколько портов.

Рис. 2.5. Ускорение процесса обмена данными при использовании коммутаторов

Однако, существуют ситуации, когда применение коммутатора не приводит к заметному повышению производительности работы сегмента. Это в первую очередь следующие случаи:

1.

Весь трафик или его большая часть предназначен для одного выходного порта.  Коммутатору нечего распараллеливать. Максимальный эффект в этом случае может быть достигнут при использовании полнодуплексных связей, но все равно ускорение будет далеко от N - всего в 2 раза. Для GigabitEthernet с полнодуплексным повторителем эффект вообще будет близок к нулевому. Отсюда видно, что эффект применения коммутаторов зависит от распределения трафика между узлами сети - чем больше распределение близко к равновероятному, тем больше коммутаторы повышают производительность сети.

2.

В сети существует очень интенсивный источник широковещательного трафика (часто это является следствием сбойной работы конечного узла), и все сегменты, подключенные к портам коммутатора, засоряются этим трафиком. Коммутатор в силу алгоритма своей работы обязан передавать широковещательные кадры на все сегменты, если кадр правильно оформлен. Поэтому для борьбы с широковещательным штормом приходится использовать другие средства - виртуальные сети VLAN и маршрутизаторы - как автономные так и совмещенные с коммутатором. В последнем случае коммутатор обычно называют коммутатором 3-го уровня.

47

Коммутатор работает в режиме перегрузки и не справляется с потоком поступающих на него кадров. Часть кадров теряется и производительность сети не только не повышается, но иногда даже и существенно снижается.

2.

Категория: Мои файлы | Добавил: BSG
Просмотров: 249 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: